Skip to content

Azureai Document Intelligence Loader

AzureAIDocumentIntelligenceLoader

Bases: BaseReader

Utilize Azure AI Document Intelligence to parse document

As of April 24, the supported file formats are: pdf, jpeg/jpg, png, bmp, tiff, heif, docx, xlsx, pptx and html.

Source code in libs/kotaemon/kotaemon/loaders/azureai_document_intelligence_loader.py
class AzureAIDocumentIntelligenceLoader(BaseReader):
    """Utilize Azure AI Document Intelligence to parse document

    As of April 24, the supported file formats are: pdf, jpeg/jpg, png, bmp, tiff,
    heif, docx, xlsx, pptx and html.
    """

    _dependencies = ["azure-ai-documentintelligence", "PyMuPDF", "Pillow"]

    endpoint: str = Param(
        os.environ.get("AZUREAI_DOCUMENT_INTELLIGENT_ENDPOINT", None),
        help="Endpoint of Azure AI Document Intelligence",
    )
    credential: str = Param(
        os.environ.get("AZUREAI_DOCUMENT_INTELLIGENT_CREDENTIAL", None),
        help="Credential of Azure AI Document Intelligence",
    )
    model: str = Param(
        "prebuilt-layout",
        help=(
            "Model to use for document analysis. Default is prebuilt-layout. "
            "As of April 24, you can view the supported models [here]"
            "(https://learn.microsoft.com/en-us/azure/ai-services/"
            "document-intelligence/concept-model-overview?view=doc-intel-4.0.0"
            "#model-analysis-features)"
        ),
    )
    output_content_format: str = Param(
        "markdown",
        help="Output content format. Can be 'markdown' or 'text'.Default is markdown",
    )
    vlm_endpoint: str = Param(
        help=(
            "Default VLM endpoint for figure captioning. If not provided, will not "
            "caption the figures"
        )
    )
    figure_friendly_filetypes: list[str] = Param(
        [".pdf", ".jpeg", ".jpg", ".png", ".bmp", ".tiff", ".heif", ".tif"],
        help=(
            "File types that we can reliably open and extract figures. "
            "For files like .docx or .html, the visual layout may be different "
            "when viewed from different tools, hence we cannot use Azure DI "
            "location to extract figures."
        ),
    )
    cache_dir: str = Param(
        None,
        help="Directory to cache the downloaded files. Default is None",
    )

    @Param.auto(depends_on=["endpoint", "credential"])
    def client_(self):
        try:
            from azure.ai.documentintelligence import DocumentIntelligenceClient
            from azure.core.credentials import AzureKeyCredential
        except ImportError:
            raise ImportError("Please install azure-ai-documentintelligence")

        return DocumentIntelligenceClient(
            self.endpoint, AzureKeyCredential(self.credential)
        )

    def run(
        self, file_path: str | Path, extra_info: Optional[dict] = None, **kwargs
    ) -> list[Document]:
        return self.load_data(Path(file_path), extra_info=extra_info, **kwargs)

    def load_data(
        self, file_path: Path, extra_info: Optional[dict] = None, **kwargs
    ) -> list[Document]:
        """Extract the input file, allowing multi-modal extraction"""
        metadata = extra_info or {}
        file_name = Path(file_path)
        with open(file_path, "rb") as fi:
            poller = self.client_.begin_analyze_document(
                self.model,
                analyze_request=fi,
                content_type="application/octet-stream",
                output_content_format=self.output_content_format,
            )
            result = poller.result()

        # the total text content of the document in `output_content_format` format
        text_content = result.content
        removed_spans: list[dict] = []

        # extract the figures
        figures = []
        for figure_desc in result.get("figures", []):
            if not self.vlm_endpoint:
                continue
            if file_path.suffix.lower() not in self.figure_friendly_filetypes:
                continue

            # read & crop the image
            page_number = figure_desc["boundingRegions"][0]["pageNumber"]
            page_width = result.pages[page_number - 1]["width"]
            page_height = result.pages[page_number - 1]["height"]
            polygon = figure_desc["boundingRegions"][0]["polygon"]
            xs = [polygon[i] for i in range(0, len(polygon), 2)]
            ys = [polygon[i] for i in range(1, len(polygon), 2)]
            bbox = [
                min(xs) / page_width,
                min(ys) / page_height,
                max(xs) / page_width,
                max(ys) / page_height,
            ]
            img = crop_image(file_path, bbox, page_number - 1)

            # convert the image into base64
            img_bytes = BytesIO()
            img.save(img_bytes, format="PNG")
            img_base64 = base64.b64encode(img_bytes.getvalue()).decode("utf-8")
            img_base64 = f"data:image/png;base64,{img_base64}"

            # caption the image
            caption = generate_single_figure_caption(
                figure=img_base64, vlm_endpoint=self.vlm_endpoint
            )

            # store the image into document
            figure_metadata = {
                "image_origin": img_base64,
                "type": "image",
                "page_label": page_number,
            }
            figure_metadata.update(metadata)

            figures.append(
                Document(
                    text=caption,
                    metadata=figure_metadata,
                )
            )
            removed_spans += figure_desc["spans"]

        # extract the tables
        tables = []
        for table_desc in result.get("tables", []):
            if not table_desc["spans"]:
                continue

            # convert the tables into markdown format
            boundingRegions = table_desc["boundingRegions"]
            if boundingRegions:
                page_number = boundingRegions[0]["pageNumber"]
            else:
                page_number = 1

            # store the tables into document
            offset = table_desc["spans"][0]["offset"]
            length = table_desc["spans"][0]["length"]
            table_metadata = {
                "type": "table",
                "page_label": page_number,
                "table_origin": text_content[offset : offset + length],
            }
            table_metadata.update(metadata)

            tables.append(
                Document(
                    text=text_content[offset : offset + length],
                    metadata=table_metadata,
                )
            )
            removed_spans += table_desc["spans"]
        # save the text content into markdown format
        if self.cache_dir is not None:
            with open(
                Path(self.cache_dir) / f"{file_name.stem}.md", "w", encoding="utf-8"
            ) as f:
                f.write(text_content)

        removed_spans = sorted(removed_spans, key=lambda x: x["offset"], reverse=True)
        for span in removed_spans:
            text_content = (
                text_content[: span["offset"]]
                + text_content[span["offset"] + span["length"] :]
            )

        return [Document(content=text_content, metadata=metadata)] + figures + tables

load_data

load_data(file_path, extra_info=None, **kwargs)

Extract the input file, allowing multi-modal extraction

Source code in libs/kotaemon/kotaemon/loaders/azureai_document_intelligence_loader.py
def load_data(
    self, file_path: Path, extra_info: Optional[dict] = None, **kwargs
) -> list[Document]:
    """Extract the input file, allowing multi-modal extraction"""
    metadata = extra_info or {}
    file_name = Path(file_path)
    with open(file_path, "rb") as fi:
        poller = self.client_.begin_analyze_document(
            self.model,
            analyze_request=fi,
            content_type="application/octet-stream",
            output_content_format=self.output_content_format,
        )
        result = poller.result()

    # the total text content of the document in `output_content_format` format
    text_content = result.content
    removed_spans: list[dict] = []

    # extract the figures
    figures = []
    for figure_desc in result.get("figures", []):
        if not self.vlm_endpoint:
            continue
        if file_path.suffix.lower() not in self.figure_friendly_filetypes:
            continue

        # read & crop the image
        page_number = figure_desc["boundingRegions"][0]["pageNumber"]
        page_width = result.pages[page_number - 1]["width"]
        page_height = result.pages[page_number - 1]["height"]
        polygon = figure_desc["boundingRegions"][0]["polygon"]
        xs = [polygon[i] for i in range(0, len(polygon), 2)]
        ys = [polygon[i] for i in range(1, len(polygon), 2)]
        bbox = [
            min(xs) / page_width,
            min(ys) / page_height,
            max(xs) / page_width,
            max(ys) / page_height,
        ]
        img = crop_image(file_path, bbox, page_number - 1)

        # convert the image into base64
        img_bytes = BytesIO()
        img.save(img_bytes, format="PNG")
        img_base64 = base64.b64encode(img_bytes.getvalue()).decode("utf-8")
        img_base64 = f"data:image/png;base64,{img_base64}"

        # caption the image
        caption = generate_single_figure_caption(
            figure=img_base64, vlm_endpoint=self.vlm_endpoint
        )

        # store the image into document
        figure_metadata = {
            "image_origin": img_base64,
            "type": "image",
            "page_label": page_number,
        }
        figure_metadata.update(metadata)

        figures.append(
            Document(
                text=caption,
                metadata=figure_metadata,
            )
        )
        removed_spans += figure_desc["spans"]

    # extract the tables
    tables = []
    for table_desc in result.get("tables", []):
        if not table_desc["spans"]:
            continue

        # convert the tables into markdown format
        boundingRegions = table_desc["boundingRegions"]
        if boundingRegions:
            page_number = boundingRegions[0]["pageNumber"]
        else:
            page_number = 1

        # store the tables into document
        offset = table_desc["spans"][0]["offset"]
        length = table_desc["spans"][0]["length"]
        table_metadata = {
            "type": "table",
            "page_label": page_number,
            "table_origin": text_content[offset : offset + length],
        }
        table_metadata.update(metadata)

        tables.append(
            Document(
                text=text_content[offset : offset + length],
                metadata=table_metadata,
            )
        )
        removed_spans += table_desc["spans"]
    # save the text content into markdown format
    if self.cache_dir is not None:
        with open(
            Path(self.cache_dir) / f"{file_name.stem}.md", "w", encoding="utf-8"
        ) as f:
            f.write(text_content)

    removed_spans = sorted(removed_spans, key=lambda x: x["offset"], reverse=True)
    for span in removed_spans:
        text_content = (
            text_content[: span["offset"]]
            + text_content[span["offset"] + span["length"] :]
        )

    return [Document(content=text_content, metadata=metadata)] + figures + tables

crop_image

crop_image(file_path, bbox, page_number=0)

Crop the image based on the bounding box

Parameters:

Name Type Description Default
file_path Path

path to the image file

required
bbox list[float]

bounding box of the image (in percentage [x0, y0, x1, y1])

required
page_number int

page number of the image. Defaults to 0.

0

Returns:

Type Description
Image

Image.Image: cropped image

Source code in libs/kotaemon/kotaemon/loaders/azureai_document_intelligence_loader.py
def crop_image(file_path: Path, bbox: list[float], page_number: int = 0) -> Image.Image:
    """Crop the image based on the bounding box

    Args:
        file_path (Path): path to the image file
        bbox (list[float]): bounding box of the image (in percentage [x0, y0, x1, y1])
        page_number (int, optional): page number of the image. Defaults to 0.

    Returns:
        Image.Image: cropped image
    """
    left, upper, right, lower = bbox

    img: Image.Image
    suffix = file_path.suffix.lower()
    if suffix == ".pdf":
        try:
            import fitz
        except ImportError:
            raise ImportError("Please install PyMuPDF: 'pip install PyMuPDF'")

        doc = fitz.open(file_path)
        page = doc.load_page(page_number)
        pm = page.get_pixmap(dpi=150)
        img = Image.frombytes("RGB", [pm.width, pm.height], pm.samples)
    elif suffix in [".tif", ".tiff"]:
        img = Image.open(file_path)
        img.seek(page_number)
    else:
        img = Image.open(file_path)

    return img.crop(
        (
            int(left * img.width),
            int(upper * img.height),
            int(right * img.width),
            int(lower * img.height),
        )
    )